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Abstract. The global dynamical properties of a quantum system can be conveniently visualized
in phase space by means of a quantum phase space entropy in analogy to a Poincaré section
in classical dynamics for two-dimensional time-independent systems. Numerical results for the
Pullen–Edmonds systems demonstrate the properties of the method for systems with mixed
chaotic and regular dynamics.

1. Introduction

Recently, it has been demonstrated for the case of one-dimensional time-periodic systems
that the global quantum dynamics of a system can be conveniently analysed and visualized
by means of a quantum phase space entropy [1–3]. In close analogy to the well known
Poincaŕe surface of section in classical dynamics, which visualizes the global dynamical
properties by a synoptic portrait of trajectories in phase space by means of their consecutive
intersections with a plane, the quantum dynamics can be visualized by means of the time-
averaged localization of wavepackets on such a plane. A more general discussion of the
properties of these quantum phase space entropies can be found in [4].

In this paper, we extend the previous studies of time-periodically driven systems with
a single degree of freedom, where a stroboscopic plot of the phase space points at integer
multiples of the driving period has been used, to the more demanding case of Hamiltonian
systems with two degrees of freedom

H = 1
2(px

2+ py2)+ V (qx, qy). (1)

(We use units where the mass is equal to unity; in addition, the numerical value of ¯h is
considered as an adjustable parameter: ‘¯h = 0.25’ means that we take units where the value
of h̄ is equal to 0.25.)

As an illustrating example, we will discuss the Pullen–Edmonds [5] system

V (qx, qy) = 1
2(q

2
x + q2

y )+ αq2
xq

2
y (2)

which has been used by various authors to study the classical/quantum correspondence for
classically chaotic systems [5–10].
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Figure 1. Classical Poincaré sections for the Pullen–Edmonds system (2) for an energyE = 20.0
and increasing nonlinearity parameterα = 0.025, 0.05, 0.075, 0.1.

By scaling the variables, it can be shown that the classical dynamics depends only on
the product of the nonlinearity parameterα and the energyE. It is therefore sufficient to
fix the energy at, e.g.E = 20 and vary the parameterα. Figure 1 shows Poincaré sections

qy = 0 and py = p(E)y = +(2(E − V (qx, 0))− p2
x)

1/2 (3)

at E = 20 for α = 0.025, 0.05, 0.075, and 0.1. Note that the centre,(px, qx) = (0, 0),
the kinetic energy in they-direction has its maximum value, i.e.py = (2E)1/2, whereas we
havepy = 0 at the outer circlep2

x + q2
x = 2E. Note also that the region outside this circle

is not empty because ofdynamical restrictions, but only because ofgeometricalreasons:
there is no intersection of the energy shellH(p, q) = E with the subspaceqy = 0.

For small α the dynamics is predominantly regular. There is a pair of stable
periodic orbits along theqx and theqy axes, which appear as a central stability island at
(px, qx) = (0, 0) or as a full circlep2

x+q2
x = 2E = 40, (the outer boundary) in the Poincaré

plot in figure 1, respectively. For future discussion we note that the inner and outer regions
of the Poincaŕe section are directly related by the symmetryqx ↔ qy . In addition, there
are two periodic orbits along the diagonalsqy = ±qx , which show up as stability islands at
(px, qx) = (±(E)1/2, 0) ≈ (±4.5, 0). The anharmonic perturbation breaks the coordinate—
momentum symmetry of the harmonic oscillator and the corresponding momentum space
trajectoriespy = ±px (circles in coordinate space with radius≈ (E)1/2 ≈ 4.5) are unstable
and appear as hyperbolic fixed points in figure 1 at(px, qx) ≈ (0, 4.5). Chaotic motion first
shows up in the vicinity of these points.

With increasingα, the chaotic region grows and more elliptic/hyperbolic island chains
appear, as, e.g. the chain of four satellite islands of the central island forα = 0.05 (by
symmetry, these islands are also observable close to the outer boundary) and a further
increase ofα leads to a bifurcation of the central fixed point (α = 0.075) followed by a loss
of stability and a further growth of the chaotic ‘sea’ between the islands. Forα = 0.1 only
a few regular regions are observed in figure 1: four islands close to the boundary centred at
(px, qx) ≈ (±6, 0) or (0,±6); two larger resonances at(±4.5, 0) and two smaller ones at
(±1.7, 0) (note that the last two are related to the four outer ones by the exchange symmetry
qx ↔ qy). We will show that this characteristic classical scenario is also observable in
quantum mechanics.

In the following section, we give a brief outline of the Husimi phase space distribution
for eigenstates of the Pullen–Edmonds Hamiltonian (2) and demonstrate that the classical
dynamical properties are reflected in some of theindividual quantum states. In addition,
the localization of the quantum states on the energy shell (3) is discussed. Theglobal, i.e.
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state-independent, phase space properties of the quantum system are analysed in section 3.
We summarize our results in section 4.

2. Phase space densities of individual states

The symmetry group of the Pullen–Edmonds Hamiltonian (2) isC4v and the eigenstates can
be classified by the four one-dimensional irreducible representationsA1,A2,B1,B2 and
the two-dimensional representationE [5]. Within each symmetry groupS, the eigenstates
are expanded in terms of symmetry-adapted harmonic oscillator wavefunctions|φSj 〉, i.e.
eigenstates of the Hamiltonian forα = 0, which are given by|nex〉 ⊗ |ney〉 + |ney〉 ⊗ |nex〉 for
classA1, by |nox〉 ⊗ |noy〉 − |noy〉 ⊗ |nox〉 for A2, by |nex〉 ⊗ |ney〉 − |ney〉 ⊗ |nex〉 for B1, and by
|nox〉⊗|noy〉+|noy〉⊗|nox〉 for B2, where even and odd states are denoted bye or o, respectively.

In addition, these states are multiplied by the normalization factor
(
2(1+ δn1n2)

)−1/2
. In

this basis, the matrix elements of the Hamiltonian (2) can be easily evaluated analytically
(a band matrix) and the eigenvaluesEν and eigenvectors|ψν〉 =

∑
j c

(ν)
j |φSj 〉 are computed

by means of the spectral transformation method of Lanczos [11]. The (degenerate) states
of classE are not explicitly considered here (the interested reader can find a discussion of
the computation and the properties of these states in [12]).

Classically, an estimate of the number of quantum statesNcl(E) up to an energyE is
given by the Weyl rule:

Ncl(E) =
∫

dp dq

(2πh̄)f
θ(E −H(p, q)) (4)

in excellent agreement with the quantum staircase function

N(E) =
∞∑
ν=1

θ(E − Eν) = Tr θ(E − Ĥ ). (5)

Expanding the integrand in powers of the coupling constantα, a useful approximation

Ncl(E, α) ≈ E2

2h̄2

(
1− α

3
E
)

(6)

can be derived. In the present analysis, we have computed 5500 states up to an energy of
E ≈ 30. In addition, we note that the density of states is high, e.g. dN/dE ≈ 230 for
E = 20.

As demonstrated in various studies before, not only the number of eigenstates, but
also the individual eigenstates themselves are intimately linked to the classical phase space
structure shown in figure 1. However, theindividual states are more or less supported by
the various classical phase space structures, which can be conveniently shown by inspecting
the morphology of quantum (Husimi) phase space densities.

2.1. Individual Husimi phase space distributions

The Husimi distribution of a quantum wavefunction|ψ〉 is given by

ρH(p, q) = |〈α|ψ〉|2 (7)

where|α〉 = |αx〉|αy〉 is a two-dimensional coherent oscillator state, i.e.

|α〉 = e−|α|
2/2

∞∑
n=0

αn

n!
(â†)n|0〉 = e−|α|

2/2
∞∑
n=0

αn√
n!
|n〉 (8)
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in the harmonic oscillator basis|n〉. The complex variableα can be mapped onto phase
space byα = (q+ ip)/

√
2h̄, and the coherent states can also be labelled as|α〉 = |p, q〉, i.e.

by the phase space point where the Gaussian distribution of the coherent state is localized.
The Husimi distribution of a harmonic oscillator state is

ρH
n (p, q) = |〈α|n〉|2 =

∣∣∣∣e− |α∗|22
(α∗)n√
n!

∣∣∣∣2 =
∣∣∣∣∣e− I

4h̄

(
I

2h̄

)n
2

e−inθ 1√
n!

∣∣∣∣∣
2

(9)

with I = q2+ p2 andθ is the polar angle in the(p, q) plane. For a linear combination of
oscillator states one simply obtains a linear combination of these terms and for the present
case of the coupled two-dimensional oscillator (2) one has

ρH
ν (px, py, qx, qy) = |〈α|ψν〉|2

= e−
Ix+Iy

2h̄

∑′

n1,n2

∑′

n′1,n
′
2

C(ν)n1n2
C
(ν)

n′1n
′
2

(
Ix

2h̄

)n1
2
(
Iy

2h̄

)n2
2
(
Ix

2h̄

)n′1
2
(
Iy

2h̄

)n′2
2

× 1√
n1!n2!n′1!n′2!

cos((n1− n′1)θx + (n2− n′2)θy) (10)

with Ix = q2
x + p2

x, . . . . TheC(ν)n1n2
are computed expansion coefficients of the eigenstates

in the oscillator basis and the primed sum denotes a summation over the symmetry selected
basis states, i.e.n1 = 0, 2, 2, 4, 6, . . . and n2 = 0, 0, 2, 2, 0, . . . for classHA1. This
circumvents a numerical evaluation of the oscillatory integrals for the computation of the
Husimi distributions.

The Husimi distributionsρH
ν = |〈α|ψν〉|2 of individual eigenstates of the Hamiltonian

(1) with eigenvalueEν have been considered by many authors to investigate the classical
quantum correspondence by comparison ofρH

ν (px, p
(E)
y , qx, 0) with the classical Poincaré

section (3) at an energyE = Eν (see, e.g. [8, 9, 13–18]). The quantum states can be
distinguished by means of the localization on the classical phase space structures (e.g.
chaotic regions, regular islands surrounded by invariant curves, localization by cantori).

A few examples of Husimi distributions for 12 selected states with energies close to
Eν ≈ 20 are shown in figure 2 (α = 0.1). The states are ordered from the upper left to the
lower right with increasing energiesEν = 20.030, 20.041, 20.116, 20.175, 20.070, 20.313,
20.136, 20.379, 20.262, 20.248, 20.331, 20.378 and we will number them by (1), (2),. . . .
States (1, 2, 6, 9, 10) belong to symmetry classA1, state (8) to classA2, (5, 7, 11, 12) to
classB1, state (4) toB2 and state (3) to classE .

State (9) clearly localizes on the pair of large stability islands centred at(px, qx) ≈
(±4.5, 0) in the classical Poincaré section (figure 1). State (8) localizes on the two islands
at (±1.7, 0) and the four islands close to the boundary centred at(px, qx) ≈ (±6, 0) or
(0,±6), which are related by the symmetryqx ↔ qy . It is well known that quantum states
can also localize on unstable periodic orbits, as, e.g. the state (12), which strongly populates
the central hyperbolic fixed point and, of course, because of symmetry the outer boundary
of the Poincaŕe section. Similarly, state (5) localizes on the already destroyed chain of
four satellite islands, which are still visible in the classical Poincaré sections (figure 1) for
α = 0.075. Some other states can be described as ‘excited’ states of the ones described
above, as, e.g. states (2) and (6), which appear as excited versions of states (9) and (12),
respectively. The other states shown localize more or less on the classically chaotic region.
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Figure 2. Quantum (Husimi) phase space densities on the(qx, px)-plane for the Pullen–
Edmonds system (α = 0.1, h̄ = 0.25).

2.2. Localization on the energy shell

Intuitively, we expect that an eigenstate|ψν〉 with energyEν is localized on the (classical)
energy surfaceH(p, q) = Eν . This can be, however, only approximately true, because
such a state also populates phase space regions at energiesE 6= Eν . The localization of
individual eigenstates|ψν〉 with eigenenergyEν on the energy shellH(p, q) = E can be
quantitatively described by the integral of the Husimi density over this energy shell

Aν(E) =
∫

PSOS

dpx dqx
2πh̄

|〈α|ψν〉|2 =
∫
p2
y62E

dpx dqx
2πh̄

ρH
ν (px, p

(E)
y , qx, 0). (11)

It is instructive to analyse first the simple case of eigenstates|ψn1n2〉 = |n1〉 ⊗ |n2〉 of
a two-dimensional harmonic oscillator with energyEn1n2 = h̄(n1 + n2 + 1). Using (9), the
Husimi density is

ρH
n1n2

(p, q) = |〈α|ψn1n2〉|2 = exp

(
−Ix + Iy

2h̄

)
1

n1!n2!

(
Ix

2h̄

)n1
(
Iy

2h̄

)n2

. (12)

On the Poincaŕe section (3) we haveIy = 2E − Ix and therefore

An1n2(E) =
1

4πh̄

∫ 2E

0
dI
∫ 2π

0
dθ e−E/h̄

1

n1!n2!

(
I

2h̄

)n1
(

2E − I
2h̄

)n2

. (13)
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With
∫ 1

0 du un(1− u)m = n!m!/(n+m+ 1)! we obtain

An1n2(E) =
1

(n1+ n2+ 1)!
e−E/h̄

(
E

h̄

)n1+n2+1

(14)

or by normalizing to unit integral over the energyE the functionÃn1n2(E) = An1n2(E)/h̄ of
a given eigenstate, which is a Gamma distribution inE with a maximum atEmax= En1n2,
average value〈E〉 = En1n2 + h̄ and variance(1E)2 = h̄2(En1n2/h̄+ 1).

Note that this distribution can also be read as a probability distribution of the eigenstates
(n1n2) on an energy shell with fixed energyE. Completeness of the eigenstates immediately
yields ∑

n1n2

An1n2(E) =
∫
p2
y62E

dpx dqx
2πh̄

= E

h̄
(15)

and the renormalized distribution of the eigenstates on the energy shell is Poisson distributed
with a maximum atEn1n2(max) ≈ E + h̄/2− h̄2/(24E), average value〈En1n2〉 = E + h̄ and
variance(1En1n2)

2 = h̄E.
Therefore, we can assume that—up to a normalization factor—the localization of the

eigenstates with energyEν on a Poincaŕe section at energyE is Poissonian distributed
according to

Aν(E) ∼ e−E/h̄

0(Eν/h̄+ 1)

(
E

h̄

)Eν/h̄
. (16)

This is exactly true for the harmonic oscillator. For the Pullen–Edmonds system (2), figure 3
shows the numerically computed distributioñAν(E) for eight states withα = 0.025, 0.05,
0.075, 0.1, andh̄ = 0.25, 0.75 andEν ≈ 20 belonging to different symmetry classes as a
function of the Poincaré section energyE. All curves almost coincide and are surprisingly
well described by the Poisson distribution (16), despite the fact that the states show different
individual phase space localization structures (cf figure 2). Even more surprising is the
insensitivity of theEν dependence with respect to a nonharmonic term in the Hamiltonian,
as illustrated in figure 4 for a Poincaré section energyE = 20 andα = 0.1, h̄ = 0.25.
Shown are states of symmetry classA1 (similar results were found for the other symmetry

0

0.05

0.1

0.15

15 20 25

Figure 3. The density on the energy shell̃Aν(E)
(normalized to unity when integrated overE) as a
function of the Poincaré section energyE for the
Pullen–Edmonds system for eight states withα =
0.025, 0.05, 0.075, 0.1, and h̄ = 0.25, 0.75 and
Eν ≈ 20 belonging to different symmetry classes.
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15 20 25
Figure 4. The density on the energy shellAν(E) as a
function of the eigenenergyEν for a Poincaŕe section
energyE = 20 for α = 0.1, h̄ = 0.25. Shown are
states of symmetry classA1.

classes). The overall dependence is well described by (16). The observed differences
appear for states which localize strongly at the boundary and at the centre of the classical
Poincaŕe section, which have smaller values ofÃ (cf the last plot of figure 2; similar
anomalous features of such ‘sombrero’ states have been reported previously [6]). As for
the case of the two-dimensional harmonic oscillator, the distributions have a maximum at
Eν(max) ≈ E + h̄/2− h̄2/(24E) = 20.125, mean value〈Eν〉 ≈ E + h̄ = 20.25 and variance
(1Eν)

2 = h̄E = 5 forE = 20 andh̄ = 0.25. The number of states contributing significantly
to the energy shellE, i.e. those in an intervalE ±1Eν , can therefore be estimated by

dNcl

dE
21E ≈ 2(E/h̄)3/2 (17)

whereNcl is the density of states (see (6)), i.e. the surface of the three-dimensional energy
shell in phase space divided by ¯h3/2. For h̄ = 0.25, this leads to approximately 103 states
localizing on the energy shellE = 20.

2.3. Phase space localization

In section 2.1 we have demonstrated that individual eigenstates|ψν〉 localize on different
classical structures in phase space. A quantitative measure of the degree of (de)localization
is provided by the Wehrl entropy [20, 21, 2]

Sν = −
∫

dp dq

(2πh̄)2
ρH
ν (p, q) ln ρH

ν (p, q) (18)

which is the von Neumann entropy for the phase space distribution.Sν satisfies the inequality
Sν > 2= number of degrees of freedom. States, which are strongly localized in phase space,
are expected to have a small entropy, as, e.g. the coherent states|α〉, whose entropy is equal
to two.

The integration in (18) extends over the full four-dimensional space, which is
numerically very time consuming. In order to limit the numerical expense we therefore
restrict ourself in this study to measure the quantum (de)localization on the Poincaré section,
i.e. we restrict the integration over the two-dimensional surface of section (3):

Sν = −
∫

PSOS

dpx dqx
2πh̄

ρ̃H
ν (px, qx) ln ρ̃H

ν (px, qx) (19)
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where ρ̃H is the renormalized Husimi density, i.e.ρH
ν divided over its integral over the

surface of sectionAν(E) (cf (11)). In addition, we take a Poincaré section at the dominant
energyE ≈ Eν as discussed in section 2.2.

Note that instead of the entropy (19) one can alternatively consider the integral over the
square of the Husimi distribution

ξ−1
ν =

∫
dpx dqx

2πh̄
[ρ̃H
ν (px, qx)]

2 (20)

i.e. the ‘mean inverse participation ratio’, which is equivalent to the use of a different type
of (Rényi) entropy [22], which is, generalized to a continuous phase space distribution,

S(β) = − 1

β − 1
ln
∫

dpx dqx
2πh̄

[ρ̃H
ν (px, qx)]

β. (21)

In the limit β → 1 this entropy agrees with the Shannnon type entropy (19) and forβ = 2
we find a connection with the mean inverse participation ratio [4]:

S(2)ν = ln ξν. (22)

The results forS(2) are similar.
An upper bound for the entropy (19) is given by a uniform density distribution over the

classical Poincaré section, which gives

Smax
ν = ln(Eν/h̄) (23)

i.e. Smax
ν = 4.38 forE = 20 (h̄ = 0.25) andSmax

ν = 4.61 forE = 25. A refined estimate of
the maximum value can be obtained by assuming a uniform distribution over the classically
chaotic region in phase space. A numerical computation of the classically chaotic phase
space area yields forα = 0.05 the valuesSmax′ ≈ 3.5 (E = 20) andSmax′ ≈ 4.2 (E = 25).
For α = 0.1 these values increase to 4.2 (E = 20) and 4.5 (E = 25).

Figure 5 shows the phase space entropyS(ν) as a function of the eigenenergyEν for
the eigenstates in the energy interval 206 Eν 6 25 for α = 0.05 andα = 0.1, (h̄ = 0.25)
in the energy interval 206 Eν 6 25. We observe a small fraction of strongly localized
states with entropies close to two and a large fraction of highly delocalized (chaotic) states

0

1

2

3

4

20 22.5 25
0

1

2

3

4

20 22.5 25

Figure 5. Phase space entropySν versus the eigenenergyEν for eigenstates of the Pullen–
Edmonds system forα = 0.05 (left) andα = 0.1 (right) in the energy interval 206 Eν 6 25
(h̄ = 0.25).
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with entropies somewhat belowSmax′ . Inspection of the Husimi densities shows that the
low-entropy states localize on the regular islands, as, e.g. states similar to (8) and (9) in
figure 2. With increasingα the number of these regular states is reduced. The states with
larger entropy populate the chaotic region.

3. Global phase space localization

As demonstrated in the previous section, the quantum phase space distributionsρH
ν of the

eigenstates reflect and respect the classical dynamical properties in phase space. However,
these states clearly show individual properties and it is desirable to develop a measure
for the global dynamical properties of the quantum system at a given energyE, which is
supposed to be related toall eigenstates, with emphasis on those states withEν ≈ E, i.e.
those states in the energy window given by1Eν (cf section 2.2).

Following [1, 4], the time-evolved Husimi distribution of a wavepacket|α(t)〉 initially
centred at a phase space point|α(0)〉 = |α0〉 = |p0, q0〉 is averaged over time:

ρ̄H(α,α0) = ρ̄H(p, q,p0, q0) = lim
T arrow∞

(
1

T

∫ T

0
dt ρH(α,α0, t)

)
= lim

T→∞

(
1

T

∫ T

0
dt |〈α|α0(t)〉|2

)
= lim

T→∞

(
1

T

∫ T

0
dt |〈α| exp(− i

h̄
Ĥ t)|α0〉|2

)
. (24)

This time averaged density describes the spreading of the initial wavepacket over phase
space. This delocalization can be quantitatively measured by the entropy

S(p0, q0) = −
∫

dp dq

(2πh̄)2
ρ̄H(p, q,p0, q0) ln ρ̄H(p, q,p0, q0) (25)

or—when we again restrict the integration to the two-dimensional surface of section (3)—by

S(px0, qx0) = −
∫

PSOS

dpx dqx
2πh̄

ρ̃H ln ρ̃H

= −
∫
p2
y62E

dpx dqx
2πh̄

ρ̃H(px, qx, px0, qx0) ln ρ̃H(px, qx, px0, qx0) (26)

whereρ̃H is the renormalized time averaged Husimi density, i.e.ρ̄H divided over its integral
over the surface of section. In order to compare with the classical Poincaré section, it is
natural to vary the initial conditions(p0, q0) over the two-dimensional classical surface of
section. A plot ofS(px0, qx0) shows the overall delocalization over the Poincaré section for
a coherent wavepacket initially placed at(px0, qx0) Similar concepts have been suggested by
Thiele and co-workers [23, 24] and by Müller [25] (see also the early papers by Nordholm
and Rice [26, 27]); for a general discussion of the use and properties of entropies for
analysing quantum localization see [4] and references therein.

The numerical computation is very much simplified by means of a decomposition in
eigenstates

ρ̄H(α,α0) = lim
T→∞

1

T

∫ T

0
dt

∣∣∣∣∑
ν

e−
i
h̄
Eν t 〈α|ψν〉〈ψν |α0〉

∣∣∣∣2
= lim

T→∞
1

T

∫ T

0
dt
∑
ν

|〈α|ψν〉|2|〈α0|ψν〉|2
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Figure 6. Global quantum phase space entropy
S(px0, qx0) of the Pullen–Edmonds system (α =
0.05, h̄ = 0.25) for E = 20 as a contour plot
over phase space.
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Figure 7. Same as figure 6, but for an increased
value of the nonlinearity parameterα = 0.1.

+
∑
µ6=ν

e−
i
h̄
(Eν−Eµ)t 〈α|ψν〉〈ψν |α0〉〈α0|ψµ)〉〈ψµ|α〉

=
∑
ν

|〈α|ψν〉|2|〈α0|ψν〉|2 (27)

where the last equality assumes nondegenerate states, i.e. it is not valid for the states
in classHE . In the following we only consider the nondegenerate states of classes
HA1,HA2,HB1,HB2, i.e. we use initial states in (24), which are coherent states|α0〉
projected onto the union of these subspaces which yields

ρ̄H
sym(α,α0) =

∑
ν ′
|〈α|ψν ′ 〉|2|〈α0|ψν ′ 〉|2 (28)

where the sum includes all|ψν〉 ∈ {HA1,HA2,HB1,HB2}.
In the numerical computation, the infinite sum in (28) can be truncated in view of the

localization on the energy shell (see section 2.2). ForE = 20, for example, only states in
the interval 15< Eν < 25 considerably contribute.

Figure 6 shows the global quantum phase space entropyS(px0, qx0) for the Pullen–
Edmonds system (α = 0.05, h̄ = 0.25) for E = 20 as a contour plot over phase space.
A comparison with figure 1 shows a clear correspondence between quantum and classical
phase space structures. The big resonance islands are clearly visible, however, the satellite
islands are not resolved for ¯h = 0.25. An additional quantum localization on the unstable
hyperbolic fixed point at(px, qx) ≈ (0,±4) appears as a local minimum of the entropy.
Figure 7 shows the same plot but for an increased value of the nonlinearity parameter
α = 0.1. Here we also find a remarkable agreement with the classical Poincaré section,
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Figure 8. Global quantum phase space entropyS(px0, qx0) the Pullen–Edmonds system
(α = 0.05, h̄ = 0.25) as a function of (a) qx0 for px0 = 0 and (b) px0 for qx0 = 0.
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Figure 9. Global quantum phase space entropyS(px0, qx0) the Pullen–Edmonds system
(α = 0.1, h̄ = 0.25) as a function of (a) qx0 for px0 = 0 and (b) px0 for qx0 = 0.
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i.e. the four outer islands and the bifurcated central resonance, appearing as two small
resonances. Again we observe a strong quantum localization at the classically unstable
fixed point at the centre.

Horizontal and vertical cuts through the entropy plots in figures 6 and 7 are shown
in figures 8 and 9, respectively. Forα = 0.05 the entropy is clearly smaller than the
upper estimate ofSmax = 4.38 (uniform density over the Poincaré section as discussed in
section 2.3), however, it considerably exceeds the estimateSmax′ ≈ 3.5 (uniform distribution
on the classically chaotic region). This can be attributed to the marked population of the
Husimi distributions of the chaotic quantum states in the regular regions. Similarly for
α = 0.1, where the estimateSmax′ ≈ 4.2 is slightly exceeded. At the centres of the big
stability islands, the entropy shows deep minima, where its value is approximately equal to
two, which is the global minimum of the Wehrl entropy (18) or (19), i.e. the Husimi density
is close to a coherent state in these points. The localization at the other stable or unstable
fixed points is much less pronounced.

4. Conclusions

In this paper we have extended the concept of quantum phase space entropies, which has
previously been developed in studies of one-dimensional systems, to the case of two degrees
of freedom. We have demonstrated that the method provides a convenient diagnostic tool
for analysing and visualizing the dynamical properties of quantum systems in phase space.
The resulting entropy plots are in close relationship to the Poincaré surfaces of section in
the study of classical dynamics. Moreover, it has been pointed out [1, 4] that the concept
of a quantum entropy has a direct counterpart in classical mechanics, which offers the
possibility of a direct comparison of classical and quantum properties to detect, e.g. quantum
localization phenomena. This question has not been addressed in this study. Clearly, much
more work is required to explore the properties of the phase space entropy concept, both in
quantum and classical dynamics.
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