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Abstract. The global dynamical properties of a quantum system can be conveniently visualized

in phase space by means of a quantum phase space entropy in analogy to aéPsEntian

in classical dynamics for two-dimensional time-independent systems. Numerical results for the
Pullen—-Edmonds systems demonstrate the properties of the method for systems with mixed
chaotic and regular dynamics.

1. Introduction

Recently, it has been demonstrated for the case of one-dimensional time-periodic systems
that the global quantum dynamics of a system can be conveniently analysed and visualized
by means of a quantum phase space entropy [1-3]. In close analogy to the well known
Poincaé surface of section in classical dynamics, which visualizes the global dynamical
properties by a synoptic portrait of trajectories in phase space by means of their consecutive
intersections with a plane, the quantum dynamics can be visualized by means of the time-
averaged localization of wavepackets on such a plane. A more general discussion of the
properties of these quantum phase space entropies can be found in [4].

In this paper, we extend the previous studies of time-periodically driven systems with
a single degree of freedom, where a stroboscopic plot of the phase space points at integer
multiples of the driving period has been used, to the more demanding case of Hamiltonian
systems with two degrees of freedom

H = 3(p:*+ pyd) + V(gr. qy). @

(We use units where the mass is equal to unity; in addition, the numerical valudsof
considered as an adjustable parameter="0.25' means that we take units where the value
of I is equal to 0.25.)

As an illustrating example, we will discuss the Pullen—Edmonds [5] system

V(gx. qy) = 3@+ ¢ + aq’q? @

which has been used by various authors to study the classical/quantum correspondence for
classically chaotic systems [5-10].
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Figure 1. Classical Poinc#&rsections for the Pullen—Edmonds system (2) for an enErgy20.0
and increasing nonlinearity parametee= 0.025, Q05, 0075, Q1.

By scaling the variables, it can be shown that the classical dynamics depends only on
the product of the nonlinearity parameterand the energye. It is therefore sufficient to
fix the energy at, e.gE = 20 and vary the parameter Figure 1 shows Poincarsections

qy=0 and  p, = p®) = +(2(E - V(g,,0) — pHY? (3)

y
at E = 20 for @« = 0.025, Q05, Q075, and QL. Note that the centrgp,, ¢,) = (0, 0),
the kinetic energy in the-direction has its maximum value, i.p, = (2E)2, whereas we
have p, = 0 at the outer circlep? + g2 = 2E. Note also that the region outside this circle
is not empty because afynamicalrestrictions, but only because géometricalreasons:
there is no intersection of the energy sh&lip, q) = E with the subspaceg, = 0.

For small « the dynamics is predominantly regular. There is a pair of stable
periodic orbits along thg, and theg, axes, which appear as a central stability island at
(px, qx) = (0,0) or as a full circlep?+¢2 = 2E = 40, (the outer boundary) in the Poinéar
plot in figure 1, respectively. For future discussion we note that the inner and outer regions
of the Poincak section are directly related by the symmegty< ¢,. In addition, there
are two periodic orbits along the diagonals= +¢,, which show up as stability islands at
(P, qx) = (£(E)Y?,0) ~ (£4.5,0). The anharmonic perturbation breaks the coordinate—
momentum symmetry of the harmonic oscillator and the corresponding momentum space
trajectoriesp, = +p, (circles in coordinate space with radigs(E)Y? ~ 4.5) are unstable
and appear as hyperbolic fixed points in figure 1at ¢,) ~ (0, 4.5). Chaotic motion first
shows up in the vicinity of these points.

With increasinge, the chaotic region grows and more elliptic/hyperbolic island chains
appear, as, e.g. the chain of four satellite islands of the central island £for0.05 (by
symmetry, these islands are also observable close to the outer boundary) and a further
increase otv leads to a bifurcation of the central fixed point£ 0.075) followed by a loss
of stability and a further growth of the chaotic ‘sea’ between the islandsaeFe10.1 only
a few regular regions are observed in figure 1: four islands close to the boundary centred at
(px» qx) ~ (£6, 0) or (0, £6); two larger resonances &t4.5, 0) and two smaller ones at
(£1.7, 0) (note that the last two are related to the four outer ones by the exchange symmetry
qx < qy). We will show that this characteristic classical scenario is also observable in
guantum mechanics.

In the following section, we give a brief outline of the Husimi phase space distribution
for eigenstates of the Pullen—-Edmonds Hamiltonian (2) and demonstrate that the classical
dynamical properties are reflected in some of itgividual quantum states. In addition,
the localization of the quantum states on the energy shell (3) is discussedjlobia i.e.
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state-independent, phase space properties of the quantum system are analysed in section 3.
We summarize our results in section 4.

2. Phase space densities of individual states

The symmetry group of the Pullen—-Edmonds Hamiltonian (Z)4sand the eigenstates can
be classified by the four one-dimensional irreducible representatianst,, B;, 5, and
the two-dimensional representatién[5]. Within each symmetry groug, the eigenstates
are expanded in terms of symmetry-adapted harmonic oscillator Wavefunmiﬁnsi.e.
eigenstates of the Hamiltonian far= 0, which are given byn¢) ® |n¢) + |n$) ® [n$) for
class Ay, by [n9) ® [n9) — In$) ® [n%) for Ay, by |n$) ® InS) — In§ )®'|n") for By, and by
In$)®|n$)+Inf )®|n") for Bz, where even and odd states are denoteel dwyo, respectively.

In addition, these states are multiplied by the normalization fa(201+8,,1,12)) Y2 n
this basis, the matrix elements of the Hamiltonian (2) can be easily evaluated analytically
(a band matrix) and the eigenvalugs and eigenvectorg),) = Zj c;”)|¢f) are computed
by means of the spectral transformation method of Lanczos [11]. The (degenerate) states
of class€ are not explicitly considered here (the interested reader can find a discussion of
the computation and the properties of these states in [12]).

Classically, an estimate of the number of quantum StAf®6E) up to an energy is

given by the Weyl rule:

dpdgq
NYNE) = ——0(E — H(p, 4
(E) = | Goan 0 E~Hp.9) )
in excellent agreement with the quantum staircase function
N(E)=) 6(E — E,) =Tro(E — H). (5)
v=1

Expanding the integrand in powers of the coupling constarg useful approximation

2

NY(E, a) ~ % (1 - %E) (6)

can be derived. In the present analysis, we have computed 5500 states up to an energy of
E =~ 30. In addition, we note that the density of states is high, eNy/d¥ ~ 230 for
E = 20.

As demonstrated in various studies before, not only the number of eigenstates, but
also the individual eigenstates themselves are intimately linked to the classical phase space
structure shown in figure 1. However, tirividual states are more or less supported by
the various classical phase space structures, which can be conveniently shown by inspecting
the morphology of quantum (Husimi) phase space densities.

2.1. Individual Husimi phase space distributions

The Husimi distribution of a quantum wavefunction) is given by

P (p, @) = l{aly)? @
where|a) = |ay)|ey) is @ two-dimensional coherent oscillator state, i.e.

—e |0“2/22 Af’)n|

8)
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in the harmonic oscillator basig). The complex variable: can be mapped onto phase
space byr = (¢g+ip)/~/2h, and the coherent states can also be labellddas: |p, q), i.e.

by the phase space point where the Gaussian distribution of the coherent state is localized.
The Husimi distribution of a harmonic oscillator state is

2 1 2
— L 1 \? —in6 1
=|e 4| =) e —
2h v/n!

with 7 = g2 + p? andé is the polar angle in thép, ¢) plane. For a linear combination of
oscillator states one simply obtains a linear combination of these terms and for the present
case of the coupled two-dimensional oscillator (2) one has

_w2 (o))"

ol (p,q) = lan)? = ‘e C

©)

Pl (Des Pys @us @y) = llelh) 2

" 2 21
/,(+l) ) (v) Ix 2 I_V 2 Ix 2 Iy
Y anen(z) () (2) (z
VllVlznn

cog(ny — ny)by + (n2 — n%)by) (10)

1
X—
N PIATY

with I, = ¢2+ pZ,.... TheC\) are computed expansion coefficients of the eigenstates
in the oscillator basis and the primed sum denotes a summation over the symmetry selected
basis states, i.eny = 0,2,2,4,6,... andny, = 0,0,2,2,0,... for classH4,. This
circumvents a numerical evaluation of the oscillatory integrals for the computation of the
Husimi distributions.

The Husimi distributions!! = |(a|v,)|? of individual eigenstates of the Hamiltonian
(1) with eigenvalueE, have been considered by many authors to investigate the classical
guantum correspondence by comparisorpbtpx, p(VE), qx, 0) with the classical Poincar
section (3) at an energf = E, (see, e.g. [8,9,13-18]). The quantum states can be
distinguished by means of the localization on the classical phase space structures (e.qg.
chaotic regions, regular islands surrounded by invariant curves, localization by cantori).

A few examples of Husimi distributions for 12 selected states with energies close to
E, = 20 are shown in figure 2»(= 0.1). The states are ordered from the upper left to the
lower right with increasing energigs, = 20.030, 20041, 20116, 20175, 20070, 20313,
20.136, 20379, 20262, 20248, 20331, 20378 and we will number them by (1), (2),..
States (1, 2, 6, 9, 10) belong to symmetry clas state (8) to classd,, (5, 7, 11, 12) to
classB,, state (4) toB3, and state (3) to class.

State (9) clearly localizes on the pair of large stability islands centregh,aty,) ~
(+4.5, 0) in the classical Poincarsection (figure 1). State (8) localizes on the two islands
at (£1.7,0) and the four islands close to the boundary centredpatqg,) ~ (£6, 0) or
(0, £6), which are related by the symmetgy <> ¢,. It is well known that quantum states
can also localize on unstable periodic orbits, as, e.g. the state (12), which strongly populates
the central hyperbolic fixed point and, of course, because of symmetry the outer boundary
of the Poincak section. Similarly, state (5) localizes on the already destroyed chain of
four satellite islands, which are still visible in the classical Poiacsctions (figure 1) for
o = 0.075. Some other states can be described as ‘excited’ states of the ones described
above, as, e.g. states (2) and (6), which appear as excited versions of states (9) and (12),
respectively. The other states shown localize more or less on the classically chaotic region.
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[=INTN

Figure 2. Quantum (Husimi) phase space densities on e p,)-plane for the Pullen—
Edmonds systemx(= 0.1, 4 = 0.25).

2.2. Localization on the energy shell

Intuitively, we expect that an eigenstdif,) with energyE, is localized on the (classical)
energy surfaceH (p, q) = E,. This can be, however, only approximately true, because
such a state also populates phase space regions at enBrgie®,. The localization of
individual eigenstategy),) with eigenenergyE, on the energy sheld (p, q) = E can be
guantitatively described by the integral of the Husimi density over this energy shell

dpx d%c 2 dpx dCIx H E
AVE)=/ ——— (¥, =/ ——pl(px, ¥, gx, 0). 11
( o5 2 (el ¥ P oy (Pxs Py qx, 0) (11)

It is instructive to analyse first the simple case of eigenstaigs,) = [n1) ® |n2) of
a two-dimensional harmonic oscillator with energy,,, = h(n1 + n2 + 1). Using (9), the
Husimi density is

L+1L\ 1 (L\*(L\"
H = ()P = exp 22 ) —— (=) () . 12
Puine P> @) = (& Pniry)| exp< 2h ) nylny! (2h> <2h) )

On the Poinca section (3) we havé, = 2F — I, and therefore

1 [* d e 1 I\"™ (2E —T\"
— —E/R
Anlnz(E)_4nE/O dI/O doe " ( _> ( — ) . (1)
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With fol duu’(1—u)™ =n'm!/(n +m + 1)! we obtain

E ni+no+1
Anlnz (E) = )

_r E/h(
(n1+ny+ 1)! h

or by normalizing to unit integral over the energythe functionZ,,l,,z(E) = Apn,(E)/h Of
a given eigenstate, which is a Gamma distributiorEinvith a maximum atEmax = Enyn,,
average valuéE) = E, ,, +h and varianc§ AE)? = h?(E,,,.,/h + 1).

Note that this distribution can also be read as a probability distribution of the eigenstates
(n1n2) on an energy shell with fixed ener@y Completeness of the eigenstates immediately
yields

(14)

dp, dg, E
A, (E) = M _ 2 1
S = [ =g 15)

ninz P

and the renormalized distribution of the eigenstates on the energy shell is Poisson distributed
with @ maximum att,,,,,,max ~ E +h/2 — h?/(24E), average valuéE,,,,) = E +h and
variance(AE,,,,)? = hE.

Therefore, we can assume that—up to a normalization factor—the localization of the
eigenstates with energ¥, on a Poinca section at energy is Poissonian distributed
according to

efE/ﬁ E E,/h
A“““m(%) ' (16)

This is exactly true for the harmonic oscillator. For the Pullen-Edmonds system (2), figure 3
shows the numerically computed distributidn (E) for eight states witlw = 0.025, Q05,

0.075, Q1, andk = 0.25, 075 andE, ~ 20 belonging to different symmetry classes as a
function of the Poincdr section energ¥. All curves almost coincide and are surprisingly
well described by the Poisson distribution (16), despite the fact that the states show different
individual phase space localization structures (cf figure 2). Even more surprising is the
insensitivity of theE, dependence with respect to a nonharmonic term in the Hamiltonian,
as illustrated in figure 4 for a Poindassection energyy = 20 anda = 0.1, &7 = 0.25.
Shown are states of symmetry clads (similar results were found for the other symmetry

T T T
015 -
AJE) o1t .
0.05 .
Figure 3. The density on the energy shell, (E)
(normalized to unity when integrated ovér) as a
0 | | function of the Poincad section energyt for the

15 20 25 Pullen—-Edmonds system for eight states with=
0.025, Q05, 0075, 01, andkx = 0.25, Q75 and
E E, ~ 20 belonging to different symmetry classes.
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0.06

0.04
A (E)

0.02

Figure 4. The density on the energy shdl|,(E) as a
function of the eigenenergh, for a Poincag section
energyE = 20 fora = 0.1, & = 0.25. Shown are
states of symmetry clas4;.

classes). The overall dependence is well described by (16). The observed differences
appear for states which localize strongly at the boundary and at the centre of the classical
Poincaé section, which have smaller values &f (cf the last plot of figure 2; similar
anomalous features of such ‘sombrero’ states have been reported previously [6]). As for
the case of the two-dimensional harmonic oscillator, the distributions have a maximum at
Eymay ¥ E+h/2— h?/(24E) = 20.125, mean valu¢E,) ~ E +h = 20.25 and variance
(AE,)?> =hE = 5for E = 20 and: = 0.25. The number of states contributing significantly

to the energy shelk, i.e. those in an intervak + AE,, can therefore be estimated by

chI
dE

where N is the density of states (see (6)), i.e. the surface of the three-dimensional energy
shell in phase space divided by/2. Forh = 0.25, this leads to approximately 48tates
localizing on the energy shell = 20.

2AE ~ 2(E/h)%? (17)

2.3. Phase space localization

In section 2.1 we have demonstrated that individual eigenstatgslocalize on different
classical structures in phase space. A quantitative measure of the degree of (de)localization
is provided by the Wehrl entropy [20, 21, 2]

S, =— (2];%12 oy (p. @) Inpfl(p. @) (18)
which is the von Neumann entropy for the phase space distribusiosatisfies the inequality
S, = 2 = number of degrees of freedom. States, which are strongly localized in phase space,
are expected to have a small entropy, as, e.g. the coherent|stat@dose entropy is equal
to two.

The integration in (18) extends over the full four-dimensional space, which is
numerically very time consuming. In order to limit the numerical expense we therefore
restrict ourself in this study to measure the quantum (de)localization on the Fogesion,

i.e. we restrict the integration over the two-dimensional surface of section (3):

dpx dgx -y ~H
Sv = - A T xs 4x In xs 4x 19
/PSOS g Py (Px: @) I 5 (P ) (19)
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where g" is the renormalized Husimi density, i.e" divided over its integral over the
surface of sectiom ,(E) (cf (11)). In addition, we take a Poind@section at the dominant
energyE ~ E, as discussed in section 2.2.

Note that instead of the entropy (19) one can alternatively consider the integral over the
square of the Husimi distribution

d X X
et = [ L gl (20)

i.e. the ‘mean inverse participation ratio’, which is equivalent to the use of a different type
of (Rényi) entropy [22], which is, generalized to a continuous phase space distribution,

1 dpx qx
§® — - 7! o (5, (px 41" D

In the limit 8 — 1 this entropy agrees with the Shannnon type entropy (19) and fer2
we find a connection with the mean inverse participation ratio [4]:

5@ =Ing,. (22)

The results fors® are similar.
An upper bound for the entropy (19) is given by a uniform density distribution over the
classical Poinc#r section, which gives

S — In(E, /h) (23)

i.e. S =438 for E =20 (o = 0.25) andS"®> = 4.61 for E = 25. A refined estimate of
the maximum value can be obtained by assuming a uniform distribution over the classically
chaotic region in phase space. A numerical computation of the classically chaotic phase
space area yields far = 0.05 the valuess™ ~ 3.5 (E = 20) andS™ ~ 4.2 (E = 25).
For o = 0.1 these values increase t®4F = 20) and 45 (E = 25).

Figure 5 shows the phase space entr6fly as a function of the eigenenergy, for
the eigenstates in the energy interval X, < 25 fora = 0.05 anda = 0.1, ( = 0.25)
in the energy interval 26 E, < 25. We observe a small fraction of strongly localized
states with entropies close to two and a large fraction of highly delocalized (chaotic) states

T T
o
L i o ® 9 %Qg
4 o o 4 D @ <>8<> 0@0% @%g@%o@ O% OQ%&%) & <§>
f ©©@§ 00@M&§§WO oooo @ <><§>@<> OO&&%%QO dg%% O
%?g 0%%%0& ALY LEX XN ROAS SRR SR X o &0
3P 0% Y0 $ ool @0 00 o 3L ¢ % o o
o 3 o © o oo <><> 00 0 40 ¢ <><><>
0T g 0 B O G 0e0 O o o .
Sy oL o 1 Sy 1 o . i
8 %o o & 0 ° 0% 8 % ° ¢ N ¢ ¢
1F : 1k :
0 ! 0 |
20 225 25 20 225 25
E, E,

Figure 5. Phase space entropf, versus the eigenenergy, for eigenstates of the Pullen—
Edmonds system fax = 0.05 (left) ande = 0.1 (right) in the energy interval 2& E, < 25
(h = 0.25).
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with entropies somewhat belo/™. Inspection of the Husimi densities shows that the
low-entropy states localize on the regular islands, as, e.g. states similar to (8) and (9) in
figure 2. With increasing: the number of these regular states is reduced. The states with
larger entropy populate the chaotic region.

3. Global phase space localization

As demonstrated in the previous section, the quantum phase space distribiftiofithe
eigenstates reflect and respect the classical dynamical properties in phase space. However,
these states clearly show individual properties and it is desirable to develop a measure
for the global dynamical properties of the quantum system at a given enErgyhich is
supposed to be related &l eigenstates, with emphasis on those states Withx E, i.e.
those states in the energy window given A¥, (cf section 2.2).

Following [1, 4], the time-evolved Husimi distribution of a wavepacke(r)) initially
centred at a phase space pdint{0)) = |ag) = |po, qo) IS averaged over time:

Tarrowoo

. <1 ’ 2
= lim —/ dt [{a|ao(1))] )
T—oo \ T 0

_ 1 (7 [ 2
im <7/0 dr (x| exp(—z H D)ol ) (24)

=1
T—o0

_ ) _ 1 (7
pH (e, o) = 5" (p, g, po, go) = _ lim (;/ dtp”(a,ao,t))
0

This time averaged density describes the spreading of the initial wavepacket over phase
space. This delocalization can be quantitatively measured by the entropy

dpdg _ _
(Znﬁ)sz(p, 4, po, 90) In 5" (p, 4, po, qo) (25)

or—when we again restrict the integration to the two-dimensional surface of section (3)—by

dp. dgx .y
S(pxov qXQ) = _/ —,OH In pH

S(po, go) = —

psos 2mh
dpx dCIx ~H ~H
= — o P (Px> Gxs Pxos 4x) N7 (Pxs Gy Pxgs o) (26)
p2<2E  27h

whereg! is the renormalized time averaged Husimi density,d'édivided over its integral
over the surface of section. In order to compare with the classical Péiseation, it is
natural to vary the initial conditiongpg, go) over the two-dimensional classical surface of
section. A plot ofS(p,,, g,) Shows the overall delocalization over the Poitgcsection for
a coherent wavepacket initially placed(at,. g.,) Similar concepts have been suggested by
Thiele and co-workers [23, 24] and byiMer [25] (see also the early papers by Nordholm
and Rice [26, 27]); for a general discussion of the use and properties of entropies for
analysing quantum localization see [4] and references therein.

The numerical computation is very much simplified by means of a decomposition in
eigenstates
2

T .
Mo, o) = lim = / o | Y e (aly) (Yhla)
T—oo T 0

v

1T
= Jm = [ o Sttt Pl

T—o0
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S(qZL'())pZL'O)

Figure 6. Global quantum phase space entropy
S(pxg» 4xo) Of the Pullen—Edmonds system &
0.05, i = 0.25) for E = 20 as a contour plot
over phase space.

Figure 7. Same as figure 6, but for an increased
value of the nonlinearity parameter= 0.1.

+ 3 e HETEN (o) (Y exo) (ol ) (W)
uF#v

= > ey Pl{col ) 12 (27)

where the last equality assumes nondegenerate states, i.e. it is not valid for the states
in class Hs. In the following we only consider the nondegenerate states of classes
Ha, Ha,, Hp,, Hp,, i.€. we use initial states in (24), which are coherent stétes
projected onto the union of these subspaces which yields

phymcr, ) = Y ||y Pl (ol ) P (28)

where the sum includes aW,) € {H 4,, H.a,, Hp,, Hp,}-

In the numerical computation, the infinite sum in (28) can be truncated in view of the
localization on the energy shell (see section 2.2). Ece 20, for example, only states in
the interval 15< E, < 25 considerably contribute.

Figure 6 shows the global quantum phase space entsgpy,, ¢.,) for the Pullen—
Edmonds systema(= 0.05, # = 0.25) for E = 20 as a contour plot over phase space.
A comparison with figure 1 shows a clear correspondence between quantum and classical
phase space structures. The big resonance islands are clearly visible, however, the satellite
islands are not resolved far= 0.25. An additional quantum localization on the unstable
hyperbolic fixed point aip,, ¢g.) ~ (0, 4) appears as a local minimum of the entropy.
Figure 7 shows the same plot but for an increased value of the nonlinearity parameter
o = 0.1. Here we also find a remarkable agreement with the classical Peiseation,
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(@ 45

S(qzgs Pzp)

() 4

3.5F R

2.5r R

S(qugs Pag)

15F R

0.5f i

Figure 8. Global quantum phase space entrofp.,,q.,) the Pullen-Edmonds system
(e = 0.05,~ = 0.25) as a function ofd) g, for p,, =0 and b) py, for g, = 0.
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@ 45
4+ J
351 R
T~ 3+ g
=
8
= st f
=
8
= 2k ,
S—
NN
151 R
1F ,
05- E
0 1 1 1 1 1 1 1
-8 6 4 2 0 2 4 6 8
DPxy
(b) 45
A+ 4
3.5F R
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=
R
= es) ,
=
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S—r
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15F R
1r 1
051 R
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Figure 9. Global quantum phase space entrofp.,,q.,) the Pullen-Edmonds system
(e = 0.1, = 0.25) as a function ofd) gy, for px, = 0 and b) py, for g, = 0.
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i.e. the four outer islands and the bifurcated central resonance, appearing as two small
resonances. Again we observe a strong quantum localization at the classically unstable
fixed point at the centre.

Horizontal and vertical cuts through the entropy plots in figures 6 and 7 are shown
in figures 8 and 9, respectively. Far = 0.05 the entropy is clearly smaller than the
upper estimate of™® = 4.38 (uniform density over the Poinésection as discussed in
section 2.3), however, it considerably exceeds the estif#te ~ 3.5 (uniform distribution
on the classically chaotic region). This can be attributed to the marked population of the
Husimi distributions of the chaotic quantum states in the regular regions. Similarly for
a = 0.1, where the estimat§™ ~ 4.2 is slightly exceeded. At the centres of the big
stability islands, the entropy shows deep minima, where its value is approximately equal to
two, which is the global minimum of the Wehrl entropy (18) or (19), i.e. the Husimi density
is close to a coherent state in these points. The localization at the other stable or unstable
fixed points is much less pronounced.

4. Conclusions

In this paper we have extended the concept of quantum phase space entropies, which has
previously been developed in studies of one-dimensional systems, to the case of two degrees
of freedom. We have demonstrated that the method provides a convenient diagnostic tool
for analysing and visualizing the dynamical properties of quantum systems in phase space.
The resulting entropy plots are in close relationship to the Pognsarfaces of section in

the study of classical dynamics. Moreover, it has been pointed out [1, 4] that the concept
of a quantum entropy has a direct counterpart in classical mechanics, which offers the
possibility of a direct comparison of classical and quantum properties to detect, e.g. quantum
localization phenomena. This question has not been addressed in this study. Clearly, much
more work is required to explore the properties of the phase space entropy concept, both in
guantum and classical dynamics.
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